Unique concurrent observations of whistler mode hiss, chorus, and triggered emissions
نویسندگان
چکیده
We present a unique 2 h ground-based observation of concurrent magnetospheric hiss, chorus, VLF triggered emissions as well as ELF/VLF signals generated locally by the High Frequency Active Auroral Research Program (HAARP) facility. Eccentricity of observed wave polarization is used as a criteria to identify magnetospheric emissions and estimate their ionospheric exit points. The observations of hiss and chorus in the unique background of coherent HAARP ELF/VLF waves and triggered emissions allow for more accurate characterization of hiss and chorus properties than in typical ground-based observations. Eccentricity and azimuth results suggest a moving ionospheric exit point associated with a single ducted path at L ~ 5. The emissions exhibit dynamics in time suggesting an evolution of a magnetospheric source from hiss generation to chorus generation or a moving plasmapause location. We introduce a frequency band-limited autocorrelation method to quantify the relative coherency of the emissions. A range of coherency was observed from high order of coherency in local HAARP transmissions and their echoes to lower coherency in natural chorus and hiss emissions.
منابع مشابه
Excitation of Chirping Whistler Waves in a Laboratory Plasma.
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificial...
متن کاملDependence of the Sweep Rate of Whistler-mode Chorus Emissions on the Plasma Density
Whistler-mode chorus consists of intense electromagnetic wave packets generated by a nonlinear mechanism involving wave-particle interactions. Chorus wave packets are discrete frequency-time structures in a frequency range from a few hundreds of Hz to several kHz changing their frequency on a time scale from a few tenths of seconds to a few seconds. The source region of chorus emissions is loca...
متن کاملLaboratory simulation of magnetospheric chorus wave generation
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. A laboratory experiment (Van Compernolle et al 2015 Phys. Rev. Lett. 114 245002, An et al 2016 Geophys. Res. Lett.) in the larg...
متن کاملRay tracing of whistler-mode chorus elements: implications for generation mechanisms of rising and falling tone emissions
Using a well-established magnetospheric verylow-frequency (VLF) ray tracing method, in this work we trace the propagation of individual risingand fallingfrequency elements of VLF chorus from their generation point in the equatorial region of the magnetosphere through to at least one reflection at the lower-hybrid resonance point. Unlike recent work by Bortnik and co-workers, whose emphasis was ...
متن کاملMultistation observations of ELF/VLF whistler mode chorus
[1] An array of seven ELF/VLF receivers in Alaska is utilized for direction finding and determination of ionospheric exit point of whistler mode chorus waves from the Earth’s magnetosphere. Each receiver records both orthogonal horizontal magnetic components of the chorus waves. All sites use GPS-synchronized sampling, allowing for the localization of ionospheric exit points utilizing both arri...
متن کامل